Jump to content
Sign in to follow this  
Judit

Um estudo sobre os encantamentos dos chapéus de Bio5

Recommended Posts

Olá gente, eu tinha postado a bastante tempo uns gráficos sobre a chance média de fragmentos ominosos necessários para levar um chapéu de um nível de encantamento até outro. Como isso ficou no discord e pode se perder resolvi transferir as imagens e explicações em um lugar mais fácil de encontrar, no caso nesse fórum. Vou deixar especificamente nessa página de Arcanos porque a classe é a mais legal😎 e porque é a classe que mais precisa e se beneficia dos hats de Bio5, talvez junto com os Bioquímicos.

Não vou simular como se obtém o encanto de insígnia por que até hoje não sei as chances exatas de obter uma insígnia ou pedra de atributo. Já me falaram que as chances são homogêneas, mas ainda cabe dupla interpretação nisso. Não sei se no segundo slot se tem uma chance de 50% e portanto 1/14 de obter uma insígnia específica ou se é uma chance de 1/6 de obter as insígnias e 1/36 de obter uma específica. O ideal seria fazer uma quantidade grande de testes pra avaliar isso, ainda o farei.

De toda forma o que temos disponível no Browiki são as chances de aumentar o nível do encanto e isso da pra calcular e simular bem a quantidade média de Fragmentos Ominosos gastos pra obter cada nível de encanto. O link do browiki que utilizo pra pegar as chances e fazer as contas esta aqui:
Tumba da Honra - bROWiki

Só uma introdução rápida de teoria

O processo de encanto segue uma coisa que em matemática chamamos de Cadeias de Markov, onde a chance de transição de um estado(nível de encantamento) para o outro é definido exclusivamente por seu atual estado e as probabilidades de transição vão ser os números compostos na matriz de transição. O problema é exatamente o mesmo de um chamado Gambler Ruin pra quem tiver curiosidade e quiser tentar reproduzir. A forma de conseguir a matriz de tempo médio de cada estado é escrever a matriz de transição pro encanto desejado e retirar linha e coluna do estado final(na matemática seria um estado recorrente) chamemos essa matriz de M pra obter a matriz de transição de estados se faz a inversão de (I-M) pra obter a matriz com os tempos médios.

Nível 2:

Para obter um encantamentos nível 2 temos o caso trivial que é simplesmente definido por (custo do encantamento)*1/(probabilidade de conseguirmos ir do 1 pro 2)
O resultado é de um custo médio pro encantamento nível 2 de 28.57 fragmentos. O gráfico com a taxa de sucesso pra cada gasto de encantamento está abaixo:
image.png.1ba1bb7a68f3a6240df1b2749f1db8cb.png

Nível 3:

Para obter um encantamentos nível 3, partindo do 1, temos uma matriz de tempo médio em cada estado:
image.png.f1369ff3ba397a40d7412b89eb040324.png
Onde a interpretação da matriz é que começando da linha(encanto inicial) "i" vamos estar em média no encanto "j"(dada pela coluna) o valor contido na matriz na linha i e coluna J(exemplo pra ir do encanto 1 pro 3  o tempo médio esperado em que ficamos no encanto 1 é de 2.857 vezes)
Nesse caso o custo médio do encanto nível 2 sé da multiplicando o valor gasto no encanto pela quantidade média de vezes que passamos no encanto. No caso pro encanto 3
Valor Médio=2.85*20 + 2* 40=137.15 de custo médio


Simulando(50 mil encantos completados com sucesso):
image.png.ce1c8bbf4e01a8c9190e9b5080324936.png
A média da simulação é a mesma calculada analiticamente como esperado de 137 a mediana(valor em que 50% das pessoas ficam acima 50% abaixo) é de 120

Nivel 4:
Para obter um encantamentos nível 4, partindo do 1, temos uma matriz de tempo médio em cada estado:
image.png.c6c800d39437a8502f6ef17063f558ea.png
A média do custo de partindo do encanto 1 chegar no 4 seria 20* 5.510+40*5.714+50*2.857=482 fragmentos ominosos de média para ir do 1 ao 4.
Precisa de uma média de 14 encantos pra alcançar o ME4. 
Demorando 5s a cada encanto demoraria menos de 2 minutos e  até obter o ME4

A simulação
image.png.c1734500b8a8e206716d5483c8f53325.png

Com média 481 e mediana de 360.

Nível 5:
Matriz de tempos médios:
image.png.5d521bf994f7c53ac9da28f50d278a8a.png
Custo=13.46*20+16.85*40+11.428*50+4*70=1,795 fragmentos ominosos de custo médio pra ir do 1 pro 5
Pra conseguir o ME5  partindo do encanto 1 teria que encantar na média o valor do somatório da primeira linha que da um total de 45 encantos
Demorando 5s a cada encanto demoraria 3.8 minutos e  até obter o ME5

Simulação(50k encantos completados):
image.png.eefa5365010f15fe336ed36305e3cd29.png

Mediana de 1300 média de 1805. Se afastou um pouco da média calculada, mas flutuações nessa ordem são esperadas.

Nível 6:
Matriz de tempos médios:
image.png.3ac030ab4a31f7148cd3e31bd42958d8.png 
Custo=49.727*20+67.619*40+50.476*50+22.22*70+5.55*100=8,334 fragmentos ominosos de média pra ir do 1 pro 6.
Pra conseguir o ME6  partindo do encanto 1 da um total de 195 encantos
Demorando 5s a cada encanto demoraria 16 minutos e  até obter o ME6

Simulação(50k de encantamentos com sucesso)
image.png.f9f4e7c511ad5fe6961753d51eb6bdfe.png
Simulado
Mediana de 5880   Média 8361

Nível 7:
Matriz de tempos médios
image.png.6007ca0bb7255ba1a7c8583cc59dc5ac.png
Custo=292.381*20+407.333*40+311.79*50+144.171*70+42.73*100+7.69*150=53,250 fragmentos ominosos de média de ir do 1 pro 7
Pra conseguir o ME7  partindo do encanto 1 da um total de 1,206 encantos
Demorando 5s a cada encanto demoraria 1 hora e 40 minutos e  até obter o ME7

Simulação(50k simulações)
image.png.71f3b8d107e5dd70de8eaba2a1749cba.png
Simulado deu:
Mediana:36960 Média de   53373

Nível 8:
Matriz de tempos médios:
image.png.8e58c58928de0d25a6cf34ba8b1e2a02.png
Custo=2745.9*20+3842*40+2954*50+1377*70+418.7*100+85.5*150+11.11*250= 510,176 ou média de 510k de fragmentos ominosos pra obter insígnia nível 8
Pra conseguir o ME8  partindo do encanto 1  da um total de 11,434 encantos
Demorando 5s a cada encanto demoraria 15 horas até obter o ME8

Simulação(10k simulações completadas, diminuiu porque começou a passar muito tempo rodando)
image.png.c034c99713d87c4bc8fc198444e39d1c.png
Mediana: 359640  Média: 518700

Nível 9:
Matriz de tempos médios:
image.png.b71c315786a55972d2beb61d580a735a.png
Custo=41183*20+57655*40+44348*50+20694*70+6308*100+1303*150+185*250+16.6*500=7,677,019 ou 7.7 Milhões de fragmentos ominosos de custo médio.
Pra conseguir o ME9  partindo do encanto 1 da um total de 171,697 encantos
Demorando 5s a cada encanto demoraria 10 dias até obter o ME9

Simulando(1k de encantos completados)
image.png.b4a8e08b9ba4bfc3dd2e43b57030418d.png
Mediana:5.4Milhões  Média 7.76 milhões
Nível 10:
Matriz de Tempos Médio
image.png.239eaaa28fdeefc42aca79045ecbb8af.png
Custo=963k*20+1349k*40+1037*50+484k*70+147k*100+30k*150+4k*250+416*500+25*1000=179,706,247 Ou 179.7 Milhões de Fragmentos Ominosos de média do 1 pro 10
Pra conseguir o ME10  partindo do encanto 1 teria que encantar uma média do somatório da primeira linha que da um total de 4 Milhões de encantos. Encantando uma vez a cada 5 segundos sem parar você conseguiria um ME10 depois de 233 dias na média.

Simulação(200 simulaçoes, demora pra rodar muito mais que isso)
image.png.b83202477ea60248018076c7149eba70.png


Simulados:
Mediana de 121M  Média de 153M.  O desvio da média analítica é esperado devido a baixa quantidade de simulações.

Considerações Finais:
Lembrando que nesse tipo de gráfico a média geralmente fica em 63%(1-1/e) de sucesso, distribuições estatísticas sem memória ter sucesso no próximo encanto não depende se tu falhou ou teve sucesso no anterior. Ao gastar o valor médio pra pegar o encanto tu tens uma chance esperada de 63% de conseguir o encanto. Outra coisa é que a maioria dos jogadores vão conseguir o encanto desejado antes de gastar o valor médio porque a distribuição é não simétrica e a mediana é menor que a média.

O máximo que da pra fazer de forma viável é o nível 8 os mais caros vão ser 6 e 7 . Os níveis 9 e 10 precisam de sorte de mega sena pra conseguir, não da pra conseguir sem ter muita sorte.

Abaixo uma tabela com o resumo do necessário em cada nível de encanto, arredondados pro valor inteiro. O tempo médio considera um intervalo de 5s por encanto e ele é ininterrupto significando que ele representa o tempo médio caso não se faça mais nada a não ser tentar encantar nesse intervalo.

image.png.a52b6f903b7c0e8a22ba6f6af2f0d251.png

Abaixo em caixa de spoiler imagens que insistem em ficar mesmo quando edito o post! ignore elas, eu só não consegui remover ela sem estragar o resto do post

 

 

 

 

image.png

image.png

image.png

 

  • Like 7

Share this post


Link to post
Share on other sites
Posted (edited)

Parabéns! Muito bacana. Você poderia fazer um de outros sistemas.

40 minutos atrás, Judit disse:

Arcanos porque a classe é a mais legal😎

Nessa parte aqui já tinha percebido que era uma pessoa inteligente.

 

Edited by Gale
  • Like 1

Share this post


Link to post
Share on other sites
3 horas atrás, Gale disse:

Parabéns! Muito bacana. Você poderia fazer um de outros sistemas.

 

Eu fiz do sistema de refino, talvez depois eu poste. Coloquei tudo no discord de arcanos, tenho todos os scripts ainda, mas vai ficar para um outra hora.

Share this post


Link to post
Share on other sites
1 hour ago, Kokuritsu said:

Estocásticos aplicados em rag, que maravilha

Ainda vou fazer o de refinos, cadeias de markov tem aplicação em quase tudo nessa vida mesmo que as vezes de forma besta ou disfarçada.

  • Like 1

Share this post


Link to post
Share on other sites
5 minutos atrás, Judit disse:

Ainda vou fazer o de refinos, cadeias de markov tem aplicação em quase tudo nessa vida mesmo que as vezes de forma besta ou disfarçada.

Matemática aplicada tá em tudo nessa vida mesmo que de forma besta SUAHSUAHSUA (eu não sei dizer muito bem se Estocásticos tá mais pro lado da estatística ou da matemática aplicada mas meu instinto diz que é da aplicada SUHAUSHA)
Não manjo muito aprofundadamente de nenhuma área (estudo licenciatura em matemática, e pessoalmente gosto mais das discussões sobre o ensino da matemática do que da matemática em si), mas é sempre bom quando aparece gente usando matemática MATEMÁTICA em situações de lazer/cotidianas. Parabéns pela disposição e pelo trabalho :D

  • Thanks 1

Share this post


Link to post
Share on other sites

Parabéns pelo post! agradeço muito. Sempre tive curiosidade, mas nunca fui atrás da resposta. Me economizou muito trabalho e com certeza vai ajudar muito a comunidade.

  • Like 1

beelrape2.png

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

×
×
  • Create New...

Important Information